УДК 614.8:51-74:621.184

Локализация максимальных напряжений и коэффициенты их концентрации в барабанах высокого давления

Курепин М.П., Сербиновский М.Ю.

Localization of maximum stresses and the their concentration factors in high pressure drums

Kurepin M.P., Serbinovskiy M.Y.

Внедрение в электроэнергетику парогазовых установок (ПГУ) с котлами-утилизаторами (КУ) и переход большой части паровых котлов на маневренный режим привел к их эксплуатации при высоких скоростях изменения температуры. Так при пусках/остановах газовой турбины ПГУ изменение температуры барабанов КУ составляет 6...9 °С/мин и более, при рекомендуемой нормативами – 3 °С/мин [1, 2]. Соответственно, обострилась проблема возникновения усталостных трещин в штуцерах барабанов и коллекторов энергетических котлов в местах, прилегающих к их штуцерам и работающих в условиях малоцикловой усталости. Задача уточнения напряженно-деформированного состояния в этих местах напрямую связана с необходимостью обеспечения безаварийной работы котлов и оценкой их реcypca.

В работе представлены результаты моделирования напряженно деформированного состояния барабана (НДС) методом конечных элементов (МКЭ) в местах сварки штуцеров разных диаметров. Получены поля напряжений от давления и температуры, определены коэффициенты концентрации напряжений. Моделирование вели с помощью программного комплекса ANSYS Mechanical 13 [3] для барабана высокого давления котла-утилизатора блока ПГУ 800 МВт Киришской ГРЭС и экспериментальной модели барабана, изготовленной в ОАО ТКЗ «Красный котельщик», снабженной штуцерами с разными диаметрами и толщиной стенки. Отдельно оценивали влияние длины прямого участка штуцера и приваренной к нему трубой. Показано, что НДС узла не меняется (точность не хуже 1%) при длине от 180 до 600 мм, а при длине более 2000 мм влияние ничтожно и не превышает погрешности округления результата расчета. Далее длину наружной части штуцера и прямого участка трубопровода принимали равной 3000 мм. Сетка призматических конечных элементов включала 20 узлов («20-узловые элементы»). Полученные результаты удовлетворяли критерию сеточной независимости, в том числе в местах концентрации напряжений, поэтому уменьшение сетки не требовалось.

При действии внутреннего давления для НДС всех моделированных областей барабанов с разными параметрами проходных штуцеров установлено, что максимумы окружных напряжений расположены на внутренней стенке штуцера в плоскости оси барабана на расстоянии около половины толщины стенки барабана от внутренней поверхности обечайки барабана. В этой области действуют радиальные напряжения сжатия по модулю в 2-3 раза меньшие окружных, но до 5 раз превышающие величину гидравлического давления, которое принято принимать в качестве минимального напряжения (σ_3) по нормативам [4]. Отметим, что область наибольших радиальных напряжений сжатия смещена по отношению точки максимума окружных напряжений на четверть толщины обечайки барабана в сторону её внутренней поверхности. Здесь радиальные напряжения сжатия превышают величину гидравлического давления до 8-10 раз. Установлено, что коэффициент концентрации K_p напряжений от давления в барабане во всех случаях штуцеров с проходом внутрь барабана не превышал значения 2,68, что ниже $K_p=3$, рекомендованного в нормативах [4]. Отметим, что напряжения и коэффициенты концентрации, рассчитанные по МКЭ совпали с точностью не хуже 19% с определенными экспериментально на модели барабана (экспериментальное тензометрическое исследование проводилось параллельно данному в ОАО ТКЗ «Красный котельщик»).

Температурные напряжения в барабанах, коллекторах и их штуцерах вызваны разностью температур внутренней и внешней поверхностей стенок. Эта разность растет в ходе разогрева и охлаждения котла, особенно при высокой скорости изменения температуры воды и пара внутри этих элементов. В ходе моделирования влияния поля температур на НДС исследуемых областей была решена нестационарная задача теплопроводности. На внутренней поверхности задавали граничные условия 3-го рода: $t_{x}=100+v_{t}\cdot\tau$, где t_{x} – температура среды (воды и/или пара), v_t – скорость изменения температуры среды, т – время изменения температуры; α=5000 Bт/(м²·K) (величина коэффициента теплоотдачи α от среды к стенке принята постоянной); наружная поверхность изолирована. Принимали *v_t*=6°С/мин как часто встречающуюся скорость нагрева барабанов котлов-утилизаторов. Коэффициент температуропроводности соответствовал начальному или конечному значению температуры стенки барабана или коллектора. При достижении квазистационарного температурного режима $(\Delta t = const)$ определяли значения Δt и полученное распределение температур использовали для расчета поля напряжений, вызванных этим перепадом температуры по толщине стенки. Далее оценивали поле напряжений, определяли напряжения в точках концентрации и в удалении от них, вычисляли коэффициент концентрации напряжений *K*_t, при данном распределении температуры. Параллельно проводили сравнение значений напряжений в удалении от зон концентрации и значений, рассчитанных по формуле РТМ 24.038.11-72 [5]: $\sigma_{\omega} = 0,167 \cdot 10^{-7} \cdot \psi \cdot v \cdot \delta^2 \cdot \alpha_t \cdot E / [a \cdot (1-\mu)]$ (1), при $\sigma_z = \sigma_{\omega}$, где σ_{ω} и σ_z – соответственно, окружные и осевые напряжения в обечайке барабана, ψ – коэффициент, определяемый по PTM 24.038.11-72 [5, черт.7]; v – скорость нагрева, °С/мин; δ – толщина стенки барабана, мм; α_t – коэффициент температурного расширения, 1/°С; *Е* – модуль Юнга, МПа; µ – коэффициент Пуассона, а - коэффициент температуропроводности, м²/сек. Расхождение результатов численного моделирования и полученных по формуле (1) не превышало 4-5%.

Установлено, что максимумы температурных напряжений проходных штуцеров локализуются на уровне внутренней поверхности обечайки барабана в месте соединения штуцера и барабана. Для непроходных штуцеров максимумы локализуются на кромке соединения штуцера и барабана. Для проходных штуцеров малой толщины (с отношением толщины штуцера к толщине барабана 0,4-0,5 и меньше) область максимумов напряжений разрывается, и кроме вышеупомянутой области появляется менее выраженная область максимумов внутри штуцера на уровне внутренней обечайки барабана. При этом компоненты напряжений в области максимума имеют отрицательные знаки. Кроме того окружные напряжения возрастают вдоль окружности штуцера с максимумом, находящимся в плоскости перпендикулярной оси барабана. Осевые напряжения возрастают вдоль окружности штуцера с максимумом, находящимся в плоскости расположенной вдоль оси барабана. Т.е. максимумы окружных и осевых напряжений отстоят друг от друга на 90 градусов.

Температурные окружные напряжения изменяются пропорционально синусу угла α между плоскостью осей барабана и штуцера и радиальным сечением штуцера, проведенным через точку, для которой определяется напряжение, а напряжения от внутреннего давления пропорциональны косинусу того же угла.

Получено распределение эквивалентных (по 3-й теории прочности) напряжений от давления и температуры на внутренней стенке штуцера. Эти распределения с погрешностью не более 3% описываются зависимостями:

 $\Delta \sigma_p = [(\sigma_{\varphi}^{\ p} - \sigma_{\varphi}^{\ pmin})/(\sigma_{\varphi}^{\ pmax} - \sigma_{\varphi}^{\ pmin})] \cdot \cos^2 \alpha + c_p,$ $\Delta \sigma_t = [(\sigma_{\varphi}^{\ t} - \sigma_{\varphi}^{\ tmin})/(\sigma_{\varphi}^{\ tmax} - \sigma_{\varphi}^{\ tmin})] \cdot \sin^2 \alpha + c_t,$

где разности $\Delta \sigma_{\phi}^{p}$ и $\Delta \sigma_{\phi}^{t}$ между, соответственно, местными σ_{ϕ}^{p} и минимальными σ_{ϕ}^{pmin} окружными напряжениям от давления и местными σ_{ϕ}^{t} и минимальными σ_{ϕ}^{tmin} температурными напряжениям, c_{p} и c_{t} – константы.

Установлено, что наибольшая величина К_t во всех исследованных случаях равнялась $2(\pm 5\%)$, что соответствует принятому в отечественных нормативах значению [4]. При этом для проходных штуцеров точки максимумов компонент напряжений при воздействии температуры находятся на наружной поверхности штуцера на уровне внутренней обечайки барабана в месте соединения штуцера и барабана, на внутренней же поверхности штуцера в месте максимумов напряжений от действия внутреннего давления величина *К*_t оказывается значительно ниже и не превышает значения 1,67 для всех исследованных случаев. При этом максимальные значения отстоят от максимальных значений при действии внутреннего давления на 90 градусов.

В результате проведённого моделирования:

1. Уточнена методика расчета и методики моделирования НДС барабанов и коллекторов паровых и водогрейных котлов на малоцикловую усталость при совместном воздействии внутреннего давления и температурных напряжений.

2. Уточнена методика оценки ресурса барабанов и коллекторов на стадии проектных работ и остаточного ресурса эксплуатируемых котлов, что снижает вероятность возникновения аварийных ситуаций в электроэнергетике и других отраслях промышленного производства.

3. Подтверждена повышенная прочность барабанов с проходными штуцерами и сквозным проваром на всю толщину стенки барабана.

Литература

1. СО 153-34.20.501-2003. Правила технической эксплуатации электрических станций и сетей Российской Федерации, п. 4.3.17, http://www.ohranatruda.ru/ot_biblio/normativ/data_n ormativ/40/40609/index.php.

2. РД 34.20.501-95. Правила технической эксплуатации электрических станций и сетей Российской Федерации, п. 4.3.17, http://www.elec.ru/library/rd/rd_34_20_501-95.pdf.

3. ANSYS Basic Analysis Procedures Guide. 1998. http://www.ansys.com/.

4. РД 10-249-98. Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды. – М.: Изд-во АООТ «НПО ЦКТИ», 1999. – 227 с.

5. РТМ 24.038.11-72. Расчет прочности трубопроводов энергоустановок для условий нестационарных температурных режимов – Л.: Изд-во ЦКТИ, 1974. – 82 с.

References

1. SO 153-34.20.501-2003. Pravila tehniche-skoj jekspluatacii jelektricheskih stancij i setej Rossijskoj Federacii [The technical operation of power plants and networks of the Russian Federation], p. 4.3.17, http://www.ohranatruda.ru/ot_biblio/normativ/data_n ormativ/40/40609/index.php.

2. RD 34.20.501-95. Pravila tehnicheskoj jekspluatacii jelektricheskih stancij i setej Rossijskoj Federacii [The technical operation of power plants and networks of the Russian Federation], p. 4.3.17, http://www.elec.ru/library/rd/rd_34_20_501-95.pdf.

3. ANSYS Basic Analysis Procedures Guide. 1998. http://www.ansys.com/.

4. RD 10-249-98. Normy rascheta na prochnosť stacionarnyh kotlov i truboprovodov para i gorjachej vody [he rules for calculating the strength of stationary boilers and steam and hot water]. – Moscow: Izd-vo AOOT «NPO CKTI», 1999. – 227 p.

5. RTM 24.038.11-72. Raschet prochnosti truboprovodov jenergoustanovok dlja uslovij nestacionarnyh temperaturnyh rezhimov [Calculation of power plants pipelines strength for conditions of non-stationary temperature modes]. – Leningrad: Izd-vo CKTI, 1974. – 82 p.

Статья поступила в редакцию 3 марта 2016 г.

Курепин Максим Павлович – ОАО Таганрогский котлостроительный завод «Красный котельщик», Таганрогский проектно-конструкторский центр, г. Таганрог, Россия. E-mail: Kurepin_MP@tkz.power-m.ru

Сербиновский Михаил Юрьевич – ОАО Таганрогский котлостроительный завод «Красный котельщик», Таганрогский проектно-конструкторский центр, г. Таганрог, Россия. E-mail: Serbinovskiy_MY@tkz.power-m.ru

Kurepin Maksim Pavlovich – PJSC «The Taganrog Boiler-Making Works «Krasny Kotelshchik», Taganrog, Russia. E-mail: Kurepin_MP@tkz.power-m.ru

Serbinovskiy Mikhail Yurjevich – PJSC «The Taganrog Boiler-Making Works «Krasny Kotelshchik», Taganrog, Russia. E-mail: Serbinovskiy_MY@tkz.power-m.ru