трибосопряжений // Трение и износ. 1986, Т.7, \mathbb{N}_{2} 5, с. 798-805.

- 4. Зелинский В.В. Новое о механизмах приработки антифрикционных подшипниковых материалов // Современные материалы и технологии 2002. Сборник статей Международной научно-технической конференции, Пенза, ПГУ, 2002, с. 141-144.
- 5. *Зелинский В.В.* Исследование закономерностей приработки подшипниковых материалов транспортных двигателей // Дисс. ...

канд. техн. наук.- Москва: ВНИИНМАШ, 1979, 229 с.

- 6. Φ илин А.П. Прикладная механика твердого деформированного тела. Т.1. М.: Наука, 1975. 832 с.
- 7. Зелинский В.В. Феноменологические основы изофрикционной приработки опор скольжения машин. Часть 2 // Машиностроение и безопасность жизнедеятельности, N_{\odot} 3(10), 2011, с. 48-52.

Статья поступила в редакцию 23 марта 2012 г.

The article considers the possibility of estimation of compatibility tribosystems provided by the elastic deformation of solid basis of binary alloys with anti-friction plastic deformation of the soft component.

Keywords: friction, compatibility, pressure, flow, material property, the deformation of the surface.

Зелинский Виктор Васильевич — кандидат технических наук, профессор кафедры «Техносферная безопасность» Муромского института (филиала) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

УДК 621.9.01

Оптимизация процессов обработки резанием на основе энергетических закономерностей деформации и разрушения материалов

Карпов А.В.

В статье рассмотрены энергетические показатели резания и их применение в целях параметрической оптимизации процессами обработки заготовок металлорежущими инструментами.

Ключевые слова: Резание материалов, режущий инструмент, оптимизация резания, деформация, разрушение, технологические параметры, энергоёмкость, энергозатраты, работа резания, энергетическая эффективность.

Введение

Определение рациональных, экономичных условий осуществления сложных процессов в техносфере осуществляют с помощью оптимизации этих процессов.

Как известно, процедура оптимизации представляет собой отыскание максимально или минимально допустимого значения (Y_{max} или Y_{min}) некоторого показателя Y, характеризующего процесс и называемого критерием

оптимальности. Если для повышения эффективности (улучшения) процесса значение показателя Y желательно увеличить (например, «производительность процесса», «экономическая прибыль»), то при оптимизации ведут поиск Y_{max} , если уменьшить (например, «себестоимость», «штучное время») — Y_{min} из области допустимых значений Y.

В зависимости от конкретных задач и внешних условий в качестве критерия опти-

ISSN 2222-5285 Машиностроение

мальности могут быть приняты различные физические и экономические показатели процесса, однако обязательным требованием является наличие функциональной связи между принятым критерием и параметрами, которыми можно управлять, т.е. целенаправленно изменять, стремясь улучшить процесс. Только в случае наличия такой связи при изменении значений одного или нескольких параметров «на входе» процесса значение показателя У «на выходе» будет увеличиваться или уменьшаться. Соответственно делают вывод, с большей или меньшей эффективностью стал осуществляться процесс при новых условиях.

Всё сказанное относится и к процессам обработки резанием, занимающим наибольший вес в обрабатывающей стадии машиностроительных производств. Процедура оптимизации при этом сводится к отысканию вектора (сочетания значений) технологических параметров, т.е.

- а) <u>параметров режущего инструмента</u> (марка инструментального материала, размеры державки $B \times H$, углы в плане φ , φ_1 , радиус при вершине r, передний угол γ , задний угол α , угол наклона режущей кромки λ);
- б) <u>элементов режимов резания</u> (глубина резания t, подача на оборот s, скорость резания v, частота вращения шпинделя n),

при котором:

- во-первых, соблюдаются требования по точности и шероховатости обработанной поверхности детали, по прочности, жёсткости, периоду стойкости инструмента, по производительности процесса обработки (всё вместе – система ограничений);
- во-вторых, критерий оптимальности Y достигает максимально или минимально допустимого значения

$$Y = Y \begin{bmatrix} (B \times H, \varphi, \varphi_1, r), \\ uнструментальный \\ материал, \\ \gamma, \alpha, \lambda, t, s, v, n \end{bmatrix} \rightarrow \{\max u \pi u \min\}. (1)$$

Если для какого-либо вектора технологических параметров $[(B \times H, \varphi, \varphi_1, r), uнструментальный материал, <math>\gamma$, α , λ , t, s, v, n] хотя бы одно из ограничений не выполняется, то такие условия обработки признаются неприемлемыми. Из множества возможных сочетаний $[(B \times H, \varphi, \varphi_1, r), uнструментальный материал, <math>\gamma$, α , λ , t, s, v, n], удовлетворяющих всей системе ограничений, оптимальным будет то, которому соответствует условие (1).

Целью исследований, освещаемых в настоящей статье, является создание методики оптимизации процессов обработки резанием с использованием критерия, отражающего энергетические закономерности стружкообразования и свидетельствующего о степени эффективности расходования энергии в зоне резания.

Критерий и методика оптимизации

Среди известных критериев оптимальности технологических процессов обработки материалов всё большее признание получают физические критерии, в основу которых положены закономерности протекания явлений, сопровождающих воздействие инструмента на заготовку. Ранее нами был предложен и исследован интегральный показатель энергетической эффективности резания K («энергетический КПД резания»), записываемый в обобщённом виде следующим образом [4]:

$$K = \frac{\{noneзная \ paбoma\}}{\{sampaченная \ paбoma\}} = \frac{\Delta w}{e} \to \max,$$
 (2)

где Δw — удельная энергоёмкость обрабатываемого материала, Дж/мм³, определяемая в зависимости от превалирующего при заданных условиях стружкообразования вида деформации и разрушения; e — удельная работа резания, Дж/мм³, т.е. работа режущего инструмента, отнесённая к единице объёма срезаемого слоя заготовки или поверхностного слоя детали.

Удельная энергоёмкость Δw есть критическое приращение плотности внутренней

энергии обрабатываемого материала, т.е. разность между предельным [u] и начальным u_0 уровнями внутренней энергии, отнесённой к единице объёма материала:

$$\Delta w = [u] - u_0. \tag{3}$$

При определении величины [u] будем руководствоваться следующей энергетической концепцией разрушения: объём материала разрушается, если накопленная в нём энергия вследствие внешнего воздействия достигла предельной величины. Тело считается разрушенным, если хотя бы в одном его локальном объёме плотность внутренней энергии возросла до критической величины [u]. Критическое приращение плотности внутренней энергии может быть записано через удельную теплоту плавления:

$$\Delta w = [u] - u_0 = \int_{T_0}^{T_s} (C_p \rho) dT = C_p \rho (T_s - T_0), (4)$$

где $C_{\rm p}$ — средняя удельная теплоёмкость; ho — плотность; $T_{\rm s}$ — температура плавления материала; $T_{\rm 0}$ — начальная температура.

Расчёт удельной энергоёмкости материала Δw через теплофизические свойства будем применять при шлифовании, либо при процессах окончательной (чистовой) лезвийной обработки, сопровождающихся образованием сливного типа стружки, если толщина срезаемого слоя мала (до 0,1-0,5 мм), а скорость резания велика (от ≈ 300 м/мин и выше).

Получены выражения удельной энергоёмкости Δw для широкого спектра конструкционных материалов через их физикомеханические и теплофизические свойства в зависимости от типа образующейся стружки и технологического назначения рабочего хода [3]. Например, при получистовом резании углеродистых и легированных конструкционных сталей с получением преимущественно суставчатого типа стружки величину Δw , Дж/мм³, можно рассчитать как работу касательных напряжений в условной плоскости сдвига с помощью известной формулы Н.Н. Зорева, если принять значение относительного сдвига $\varepsilon = 2,5$:

$$\Delta w = \frac{1.5 \cdot \sigma_{\rm B}}{1 - 1.7 \cdot \psi_{\rm B}} \cdot 10^{-3} \,, \tag{5}$$

где $\sigma_{\scriptscriptstyle B}$ – временное сопротивление, МПа; $\psi_{\scriptscriptstyle B}$ – относительное равномерное поперечное сужение стали.

За образование стружки надлома при резании хрупких материалов ответственны нормальные растягивающие напряжения, поэтому удельную энергоёмкость Δw в этом случае примем равной максимальной объёмной плотности работы этих напряжений:

$$\Delta w = \int_{0}^{\varepsilon_{\rm p}} \sigma(\varepsilon) d\varepsilon \approx \frac{1}{2} \,\sigma_{\rm B} \,\delta \,, \tag{6}$$

где $\sigma_{\rm B}$, $\varepsilon_{\rm p}$, δ — соответственно временное сопротивление, критическое значение относительной деформации, относительное удлинение обрабатываемого материала при растяжении.

Удельная работа резания e, Дж/мм³, зависит как от характеристик заготовки (вид и свойства обрабатываемого материала, состояние поверхности), так и от управляемых факторов обработки, в случае процесса точения – от технологических параметров [($B \times H$, ϕ , ϕ_1 , r), инструментальный материал, γ , α , λ , t, s, v, n]. При этом

$$e = \frac{60 \cdot N \cdot k_{\rm N}}{\Pi} \,, \tag{7}$$

где N — мощность резания, Вт; $k_{\rm N}$ — коэффициент изменения мощности в течение времени рабочего хода инструмента (при продольном точении $k_{\rm N}=1$, при поперечном точении — $k_{\rm N}=0.5$); Π — минутный съём стружки, мм³/мин [2].

Дальнейшее преобразование выражения (7), а, следовательно, и выражения (2) связано с необходимостью представления в том или

ISSN 2222-5285 Машиностроение

ином виде мощности резания N через показатели свойств обрабатываемого и инструментального материалов, а также управляемые технологические параметры. Известны различные методы аналитического определения мощности резания N; каждый из них обладает достоинствами и недостатками. Учитывая, что для целей оптимизации интерес представляет не столько расчёт точного значения мощности N, сколько функциональная связь мощности с управляемыми технологическими параметрами, воспользуемся известными эмпирическими формулами определения мощности N применительно к тому или иному процессу резания.

Так, с учётом комплексных коэффициентов C_N , K_N и степеней влияния x_p , y_p , q_p , входящих в эмпирические формулы мощности резания, показатель энергетической эффективности K применительно к процессу получистового точения конструкционных сталей принимает вид [4]:

$$K = \frac{\Delta w}{e} \approx \left(0.153 \cdot \frac{1000^{q_{\rm p}}}{\pi^{q_{\rm p}}} \cdot \frac{\sigma_{\rm B}}{C_{\rm N} \cdot K_{\rm N} \cdot (1 - 1.7\psi_{\rm B})}\right) \cdot (8)$$

$$\frac{t^{1-x_{\rm p}} \cdot s^{1-y_{\rm p}} \cdot (D - t)}{D^{1+q_{\rm p}} \cdot n^{q_{\rm p}}}$$

Поскольку показатель K будет использован нами в качестве критерия оптимальности, представим выражение (8) как целевую функцию:

$$K = \left(0,153 \cdot \frac{1000^{q_{p}}}{\pi^{q_{p}}} \cdot \frac{\sigma_{B}}{C_{N} \cdot K_{N} \cdot (1-1,7\psi_{B})}\right). \tag{9}$$

$$\frac{t^{1-x_{p}} \cdot s^{1-y_{p}} \cdot (D-t)}{D^{1+q_{p}} \cdot n^{q_{p}}} \rightarrow \max$$

В [3] было показано, что целевая функция $K \to \max$ соответствует условию минимума обобщённых затрат на процесс обработки, поэтому критерий K в полной мере отвечает требованиям экономичности.

В качестве оптимального признаётся такой вектор технологических параметров [($B \times H$, φ , φ_1 , r), инструментальный материал, γ , α , λ , t, s, v, n]_{орt}, при котором:

- 1) значение критерия K максимально;
- 2) выполняется система ограничений $(C_1, C_2...C_n)$, количество и содержание которых зависят от конкретных видов и условий обработки.

Например, для процесса точения ограничивающими факторами являются: 1) заданная на операционном эскизе величина поля допуска Δ , мкм, на размер обработанной поверхности; 2) заданная на операционном эскизе шероховатость [Ra], мкм, обработанной поверхности; 3) принятый период стойкости инструмента [T]; 4) мощность электродвигателя станка $N_{9\partial}$; 6) максимально допустимое основное технологическое время обработки [$\tau_{\text{осн}}$].

Алгоритм оптимизации по критерию наибольшей энергетической эффективности процессов резания реализован в Муромском институте Владимирского государственного университета в виде пакета прикладных программ в среде Delphi применительно к наружному точению, цилиндрическому фрезерованию, разрезанию заготовок дисковыми пилами.

Программа Rezec_OPTIM, предназначенная для установления оптимальных значений технологических параметров точения, включает базу данных о следующих типоразмерах инструментов:

- 1) если в качестве вида инструментального материала выбрана быстрорежущая сталь проходные резцы по ГОСТ 18868-73, 18869-73, 18870-73 (всего 23 типоразмера); подрезные резцы по ГОСТ 18871-73 (5 типоразмеров);
- 2) если в качестве вида инструментального материала выбран твердый сплав проходные резцы по ГОСТ 18877-73, 18878-73, 18879-73 (всего 25 типоразмеров); подрезные резцы по ГОСТ 18880-73 (7 типоразмеров).

База данных об инструменте может быть скорректирована в соответствии с номенкла-

турой резцов, имеющихся в конкретном производственном подразделении. Каждый типоразмер резца характеризуется значениями размеров державки B, H, радиуса при вершине r, углов в плане φ, φ_1 . В зависимости от видов обрабатываемого и инструментального материалов последовательно задаются марки инструментального материала (Р6М5; T30K4, T15K6, T5K10, T5K12B, T14K8, BK8, ВК6, ВК4, ВК3), а также допустимые дискретные значения переднего у, главного заднего α и наклона главной режущей кромки λ углов режущего лезвия резца. Алгоритм программы Rezec OPTIM построен по принципу вложенных расчётных циклов. Для каждого сочетания «типоразмер резца → марка инструментального материала \rightarrow угол $\gamma \rightarrow$ угол $\alpha \rightarrow$ угол λ » организуется отдельный цикл расчёта. Вначале определяются значения:

- 1) поправочных коэффициенты на мощность и скорость резания;
- 2) момента сопротивления и момента инерции сечения державки резца; полярного момента инерции заготовки.

Диапазон и дискретность изменения режимов резания внутри каждого цикла приняты следующими:

- частота вращения шпинделя n = 15-2500 мин⁻¹, шаг 5 мин⁻¹;
- подача на оборот s=0,03-8,00 мм/об, шаг 0,005 мм/об.

Для текущего сочетания «типоразмер резца \to марка инструментального материала \to угол γ \to угол α \to угол λ \to n \to s» в программе Rezec_OPTIM последовательно рассчитываются:

- а) момент сопротивления W, мм³, момент инерции $J_{\rm p}$, мм⁴;
 - б) полярный момент инерции J_{3ar} , мм⁴;
 - в) скорость резания v, м/мин;
 - Γ) стойкость резца T, мин;

- д) составляющие силы резания P_{Z} , P_{X} , P_{Y} , P_{ZY} , H;
 - e) мощность резания N, B_T ;
- ж) основное технологическое время $\tau_{\text{осн}},$ мин;
- з) изгибающий момент $M_{\rm изг}$, Н·мм, и изгибающее напряжение $\sigma_{\rm изг}$, МПа, в державке резца;
- и) стрелы прогиба заготовки $f_{\text{заг}}$, мм, и резца f_{p} , мм;
- κ) шероховатость обработанной поверхности Ra, мкм;
 - л) минутный съём стружки Π , мм³/мин;
 - м) удельная работа резания e, Дж/мм³;
- н) удельная энергоёмкость обрабатываемого материала *w*, Дж/мм³;
- о) показатель энергетической эффективности резания K.

Система ограничений $(C_1, C_2...C_n)$ сформулирована в виде неравенств:

$$N < N_{\rm en} \cdot \eta \,, \tag{10}$$

где η — КПД привода главного движения станка:

$$\sigma_{_{\mathsf{U}\mathsf{3}\Gamma}} \leq [\sigma_{_{\mathsf{U}\mathsf{3}\Gamma}}];$$
 (11)

$$f_{3\mathrm{a}\Gamma} \le [f_{3\mathrm{a}\Gamma}],\tag{12}$$

где $[\sigma_{\rm изг}]$ — допускаемое изгибающее напряжение материала державки резца; $[f_{\rm заг}]$ = $0.5 \cdot \Delta$ — допускаемая стрела прогиба заготовки от составляющих силы резания;

$$f_{\mathbf{p}} \le [f_{\mathbf{p}}],\tag{13}$$

где $[f_{\rm p}]$ – допускаемое тангенциальное смещение вершины резца от составляющей $P_{\rm Z}$ силы резания: $[f_{\rm p}]=0.1\,$ мм на предварительных и $[f_{\rm p}]=0.05\,$ мм на окончательных переходах обработки;

$$Ra \leq [Ra];$$
 (14)

$$\tau_{\text{OCH}} \le [\tau_{\text{OCH}}];$$
(15)

$$T \ge [T]. \tag{16}$$

Заключение

Результаты оптимизации процессов резания заготовок из углеродистых конструкци-

ISSN 2222-5285 Машиностроение

онных сталей резцами, фрезами и дисковыми пилами представлены в [5] и систематизированы в виде таблиц. Снижение энергетических затрат за счёт использования полученных технологических режимов достигает 18-22 % при обеспечении заданной стойкости режущих инструментов, точности, шероховатости обработанных поверхностей и производительности обработки.

Представляется перспективным использовать рассмотренные в настоящей статье критерий и алгоритм параметрической оптимизации применительно к новым, высокопроизводительным технологическим процессам обработки резанием, в частности — к точению поверхностей торсионных валов безвершинными резцами или резцовыми гребёнками с постоянным или переменным углом наклона режущих кромок [1], к ротационному точению, фрезоточению и т.п.

Литература

1. Зелинский В.В., Карпов А.В. Совершенствование чистовой токарной обработки

путём применения инструментов безвершинных конструкций // Машиностроение и безопасность жизнедеятельности, 2011, № 3 (10). С. 53-57.

- 2. Игнатов С.Н., Карпов А.В., Распопин А.П. Оценка эффективности лезвийной обработки с использованием безразмерного энергетического критерия // СТИН. № 12. 2004. С. 23-26.
- 3. *Карпов А.В*. К вопросу управления процессом резания на основе энергетических закономерностей деформации и разрушения твёрдых тел // Машиностроение и безопасность жизнедеятельности, 2011, № 1 (8). С. 37-49.
- 4. *Карпов А.В.* Оценка эффективности процесса резания с помощью энергетических критериев // Машиностроение и безопасность жизнедеятельности, 2010, № 7. С. 100-108.
- 5. *Карпов А.В.* Энергетически экономичные режимы резания // Машиностроение и безопасность жизнедеятельности, 2008, № 5. С. 138-144.

Статья поступила в редакцию 26 марта 2012 г.

In article power indicators of cutting and their application with a view of parametrical optimization of cutting processes with metal-cutting tools are considered.

Keywords: Cutting materials, cutting tools, optimization of the cutting, deformation, fracture, technological parameters, energy, power, work is cutting energy efficiency.

Карпов Алексей Владимирович — кандидат технических наук, доцент кафедры «Технология машиностроения» Муромского института (филиала) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»